Hydrodynamic stability theory

Answers to problem sheet 1. Linear stability.

Q1. Linearising about the trivial basic state, we write

$$
\begin{equation*}
u=0+\delta \tilde{u}+\cdots . \tag{1}
\end{equation*}
$$

For small δ we have $\sin (u) \approx \delta \tilde{u}+O\left(\delta^{3}\right)$, so at $O(\delta)$ we get the linearised equation

$$
\begin{equation*}
\partial_{t} \tilde{u}-\tilde{u}=\frac{1}{R} \partial_{y}^{2} \tilde{u} . \tag{2}
\end{equation*}
$$

We now do a normal mode analysis, setting $\tilde{u}=\bar{u}(y) \exp (s t)$. Substituting this into the linearised equation gives

$$
\begin{aligned}
(s-1) \bar{u} & =\frac{1}{R} \bar{u}^{\prime \prime}, \\
\bar{u}^{\prime \prime}+R(1-s) \bar{u} & =0 .
\end{aligned}
$$

This has a solution of the form

$$
\begin{equation*}
\bar{u}=\alpha \cos (\lambda y)+\beta \sin (\lambda y) \quad \text { with } \quad \lambda^{2}=R(1-s), \tag{3}
\end{equation*}
$$

in which α and β are constants. The boundary conditions $\bar{u}(0)=\bar{u}(\pi)=0$ impose $\alpha=0$ and $\lambda=n$ for $n=1,2, \cdots$. Thus we have

$$
\begin{equation*}
R(1-s)=n^{2} \quad \text { and so } \quad s=1-\frac{n^{2}}{R} . \tag{4}
\end{equation*}
$$

From the sketch, we see that the base state is linearly stable for $R<1$.

Q2. This was discussed in the notes. Starting with Eqn. 53,

$$
\begin{equation*}
\left[D^{2}-a^{2}-\frac{s}{\kappa}\right]\left[D^{2}-a^{2}\right]\left[D^{2}-a^{2}-\frac{s}{\nu}\right] \bar{w}=-\frac{a^{2} \alpha g \beta}{\kappa \nu} \bar{w} \tag{5}
\end{equation*}
$$

we define the dimensionless quantities

$$
\begin{equation*}
\hat{z}=\frac{z}{d}, \quad \hat{D}=d D, \quad \hat{a}=d a, \quad \hat{s}=\frac{s d^{2}}{\kappa} \text { and } \quad \hat{\bar{w}}=\frac{d}{\kappa} \bar{w} . \tag{6}
\end{equation*}
$$

Substituting these into (53) gives

$$
\begin{equation*}
\left[\frac{\hat{D}^{2}}{d^{2}}-\frac{\hat{a}^{2}}{d^{2}}-\frac{\hat{s}}{d^{2}}\right]\left[\frac{\hat{D}^{2}}{d^{2}}-\frac{\hat{a}^{2}}{d^{2}}\right]\left[\frac{\hat{D}^{2}}{d^{2}}-\frac{\hat{a}^{2}}{d^{2}}-\frac{\hat{s}}{d^{2}} \frac{\kappa}{\nu}\right] \frac{\kappa}{d} \hat{\bar{w}}=-\frac{\hat{a}^{2} \alpha g \beta}{d^{2} \kappa \nu} \frac{\kappa}{d} \hat{\bar{w}} . \tag{7}
\end{equation*}
$$

Dividing by κ / d, multiplying by d^{6} and dropping the hats for clarity, we get

$$
\begin{equation*}
\left[D^{2}-a^{2}-s\right]\left[D^{2}-a^{2}\right]\left[D^{2}-a^{2}-s / \mathrm{P}\right] \bar{w}=-a^{2} \mathrm{R} \bar{w} \tag{8}
\end{equation*}
$$

in which $\mathrm{P}=\frac{\nu}{\kappa}$ and $\mathrm{R}=\frac{\alpha d^{4} g \beta}{\kappa \nu}$.
Q3. As usual we perturb the basic state $\Phi_{\mathrm{B}}=\eta$ by writing $\Phi=\eta+\delta \phi$ with $|\delta| \ll 1$; and we seek a normal mode solution with

$$
\begin{equation*}
\phi=\cos (k \xi) F(\eta) \exp (s t) . \tag{9}
\end{equation*}
$$

After substitution into the Eckhaus equation, we get

$$
\begin{equation*}
F^{\prime \prime}+F\left[k^{2} R-k^{4} R-s R-k^{2}\right]=0 . \tag{10}
\end{equation*}
$$

The solutions to this that satisfy the boundary conditions $\phi(0)=\phi(1)=0$ are

$$
\begin{equation*}
F(\eta)=A \sin (n \pi \eta) \tag{11}
\end{equation*}
$$

in which

$$
\begin{equation*}
n^{2} \pi^{2}=R\left(k^{2}-k^{4}-s\right)-k^{2} \quad \text { with } \quad n=1,2,3 \cdots \tag{12}
\end{equation*}
$$

The flow first becomes unstable for mode $n=1$ at $R=R_{\mathrm{c}}\left(k_{\mathrm{c}}\right)$, where

$$
\begin{equation*}
R_{\mathrm{c}}\left(k_{\mathrm{c}}\right)=\frac{\pi^{2}+k_{\mathrm{c}}^{2}}{k_{\mathrm{c}}^{2}-k_{\mathrm{c}}^{4}} . \tag{13}
\end{equation*}
$$

The minimum occurs when $\frac{d R_{c}}{d k_{\mathrm{c}}}=0$. To simplify the algebra define $\mu=k_{\mathrm{c}}^{2}$ and consider $\frac{d R_{\mathrm{c}}}{d \mu}=0$, which leads to

$$
\begin{equation*}
\mu^{2}+2 \pi^{2} \mu-\pi^{2}=0 \quad \text { and so } \quad \mu=k_{\mathrm{CM}}^{2}=\pi\left[\sqrt{1+\pi^{-2}}-1\right] . \tag{14}
\end{equation*}
$$

