LAMINAR BOUNDARY LAYERS
Answers to problem sheet 3: Exact Solutions and Separation.

1. Stagnation point

We seek a solution close to the forward stagnation point. (See sketch.)
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The stream function W is defined by,

We know that,
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However, the boundary layer flow at any x = x; only has knowledge of its previous
history x < x7. At any curvilinear distance x from the nose, therefore, it cannot know
the radius of the cylinder. As a consequence, we must replace x by a. We must also
replace U by the the relevant velocity scale u.(x). Hence,
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Similarly to the flat plate problem, we set:
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The change of variables yields,
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We can now calculate
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Expressed in the new variables, the convective operator is
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Hence, the BL momentum equation becomes,
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with boundary conditions

y=0=n=0: u=0= f(0) =
v=0= f(0) = 0
on the exterior edge of the boundary layer : f'(c0) = 1.

2. Displacement and momentum thickness of the Blasius solution

From the notes on the Blasius boundary layer,
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We know that f(0) = 0 and thus,

. 2wz /2 .
7= () Jmo-n

Similarly,
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Integration by parts:

g=1—f"sdg=—f"df and h = f; dh = df. We get
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and we have " = —f f” (Blasius boundary layer solution), so
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since f'(00) =1 and f(0) = 0. Hence,

f(e0)
| A== =118 = r),

because the boundary layer tends exponentially to the uniform outer stream, so that

f"(00) =0 (see III 14).

Finally, the momentum thickness becomes,
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3. Separation point:

Use the dimensional boundary layer equations expressed in terms of the pressure gradient
dp/dz, i.e.
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Differentiate the momentum equation equation with respect to vy, i.e.
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The continuity equation gives
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so that the momentum equation becomes
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Differentiate the momentum equation again with respect to y, i.e.
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Use the continuity equation again to obtain,
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On the body surface, i.e. at y = 0, u = v = 0 and Ju/dz = 0, so the momentum

equation reduces to,
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If we assume that the right hand-side term is finite and non-zero at y = 0 then, by
integrating the above equation in the vicinity of z,, we find,
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i.e. there is a square-root singularity.



