
Laminar Boundary Layers

Answers to problem sheet 3: Exact Solutions and Separation.

1. Stagnation point

We seek a solution close to the forward stagnation point. (See sketch.)
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However, the boundary layer flow at any x = x1 only has knowledge of its previous
history x < x1. At any curvilinear distance x from the nose, therefore, it cannot know
the radius of the cylinder. As a consequence, we must replace x by a. We must also
replace U by the the relevant velocity scale ue(x). Hence,
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Similarly to the flat plate problem, we set:
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The change of variables yields,
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We can now calculate
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Expressed in the new variables, the convective operator is
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Hence, the BL momentum equation becomes,
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i.e.

f ′′′ + ff ′′ + 1 − f ′2 = 0,

with boundary conditions

y = 0 ⇒ η = 0 : u = 0 ⇒ f ′(0) = 0

v = 0 ⇒ f(0) = 0

on the exterior edge of the boundary layer : f ′(∞) = 1.

2. Displacement and momentum thickness of the Blasius solution

From the notes on the Blasius boundary layer,
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We know that f(0) = 0 and thus,
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Integration by parts:
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because the boundary layer tends exponentially to the uniform outer stream, so that
f ′′(∞) = 0 (see III 14).

Finally, the momentum thickness becomes,
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3. Separation point:

Use the dimensional boundary layer equations expressed in terms of the pressure gradient
dp/dx, i.e.
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Differentiate the momentum equation equation with respect to y, i.e.
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Differentiate the momentum equation again with respect to y, i.e.
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Use the continuity equation again to obtain,
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On the body surface, i.e. at y = 0, u = v = 0 and ∂u/∂x = 0, so the momentum
equation reduces to,
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If we assume that the right hand-side term is finite and non-zero at y = 0 then, by
integrating the above equation in the vicinity of xs, we find,
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i.e. there is a square-root singularity.


