
Hydrodynamic stability theory

Answers to problem sheet 4. Further bifurcation theory.

Q1. (i) The given equations are

dx

dt
= −y + (a − x2 − y2)x, (1)

dy

dt
= x + (a − x2 − y2)y. (2)

Consider (1)+i(2):

d

dt
(x + iy) = −y + ix + (a − x2 − y2)(x + iy)

= i(x + iy) + (a − |x + iy|2)(x + iy). (3)

Setting x + iy = reiθ, we get

d

dt
(reiθ) = ireiθ + (a − r2)reiθ

dr

dt
eiθ + i

dθ

dt
reiθ = ireiθ + (a − r2)reiθ. (4)

Canceling the factor eiθ across, and taking the real and imaginary parts of the
resulting equation, we get

dr

dt
= ar − r3, (5)

dθ

dt
= 1 for r 6= 0. (6)

(ii) Referring to page 11 in section 7 of the notes, we recognise Eqn. 5 to be
of the normal form for a supercritical pitchfork bifurcation. Ignoring the phase
angle θ, therefore, the bifurcation diagram or r vs. a will be of the form of the
top sketch on page 12 of the notes, with x replaced by r on the vertical axis.

(iii) In the Argand plane (x − y), r gives the distance from the origin, while
θ gives the phase angle. Reinstating θ̇, therefore, the parabola sketched above
now becomes a bowl, as in the bottom figure on page 14 of the notes. For the
combined dynamics of r, θ, therefore, we have a supercritical Hopf bifurcation.

(iv) The two slices were shown in the top figure on page 14 of the notes. For
a < 0 we have a stable focus. For a > 0 we have an unstable focus and a stable
limit cycle.
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Q2. The given equation is

dx

dt
= r ln(x) + x − 1. (7)

Setting x = 1 gives ẋ = 0 ∀ r. So x = 1 is a stationary solution for all r.
Consider small x̃ = x − 1. Setting x = 1 + x̃ in (7), we get

dx̃

dt
= r ln(1 + x̃) + x̃

= r

[

x̃ − x̃2

2
+ O(x̃3)

]

+ x̃

= (1 + r)x̃ − r

2
x̃2 + O(x̃3). (8)

Comparing this to Eqn. 22 on page 9 of the notes, we see that the system exhibits
a transcritical bifurcation at (1 + r) = 0 and so rc = −1.

Setting x̃ = aX, we get

a
dX

dt
= (1 + r)aX − r

2
a2X2 + O(X3). (9)

Dividing across by a, setting a = 2/r, R = 1 + r, and neglecting terms O(X3),
we indeed get the normal form

dX

dt
= RX − X2. (10)

Q3. The given equation is

dx

dt
= f(x; a) = ax − x2. (11)

The requested sketches are below. The bifurcation diagram is (the top half of)
the figure on page 10 of the notes. Make sure you can relate the dynamics shown
by the arrows on the bifurcation diagram to that shown by the arrows below.

f f

x x = 0

x = 0

unstable
x

stable
x = astable

a < 0 a > 0
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Q4. (i) For a stationary solution xn+1 = xn, hence xn = 0 or xn = 1 − λ−1.

(ii) Consider a perturbation away from a stationary solution, so that xn =
Xn + ǫn, where Xn = 0 or Xn = 1 − λ−1. For the first case, if |ǫn| ≪ 1 then we
can neglect the nonlinear terms to get

ǫn+1 = λǫn, (12)

and hence
∣

∣

∣

∣

ǫn+1

ǫn

∣

∣

∣

∣

= |λ|. (13)

Therefore the perturbation |ǫn| → 0 as n → ∞ provided |λ| < 1. Similarly for
the second stationary solution, we may linearise about Xn = 1 − λ−1 to obtain

ǫn+1 = −λ(1 − λ−1)ǫn + ǫn. (14)

Thus
∣

∣

∣

∣

ǫn+1

ǫn

∣

∣

∣

∣

= |2 − λ|, (15)

and the solution is stable for 1 < λ < 3.

(iii) For a period-2 solution, we require xn+2 = xn, where we have

xn+1 = λxn(1 − xn), (16)

and
xn+2 = λxn+1(1 − xn+1), (17)

so that
xn+2 = λ2xn(1 − xn)[1 − λxn(1 − xn)]. (18)

Substituting xn+2 = xn, this becomes a fourth-order polynomial for xn. We
already know two solutions to this polynomial: the stationary solutions xn = 0
and xn = 1 − λ−1 discussed above, since for those states xn+2 = xn+1 = xn. We
therefore now seek to factor these out.

Dividing across by xn gives

x3

n
− 2x2

n
+

1 + λ

λ
xn +

λ−2 − 1

λ
= 0. (19)

Factoring out the second stationary solution xn = 1 − λ−1 leaves a quadratic
equation for the two states involved in the period-2 solution

(

xn +
1 − λ

λ

) [

x2

n
− (1 + λ−1)xn +

1 + λ

λ

]

= 0. (20)

The quadratic finally therefore provides the two period-2 states:

2xn = 1 +
1

λ
± 1

λ

√
λ2 − 2λ − 3. (21)
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(iv) Writing xn = Xn + ǫn, we have

Xn+1 + ǫn+1 = F (Xn) + ǫnF ′(Xn) + · · · , (22)

using a Taylor series expansion of F for small perturbations ǫn. Then, since
Xn+1 = F (Xn) by definition of the stationary points Xn, we find that

ǫn+1 = ǫnF ′(Xn). (23)

Similarly ǫn+2 = ǫn+1F
′(Xn+1) = ǫnF ′(Xn)F ′(Xn+1). Therefore, the state is

linearly stable for
∣

∣

∣

∣

ǫn+2

ǫn

∣

∣

∣

∣

= |F ′(Xn)F ′(Xn+1)| < 1. (24)
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