
4 Shear flow instabilities

Here we consider the linear stability of a uni-directional base flow in a channel

uB =







uB(y)
0
0






in the region y ∈ [ y1, y2 ]. (135)
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In Sec. 4.1 we derive an equation governing the linear stability of such flows with respect
to 3D perturbations, for viscous fluids. This is called the Orr-Somerfeld equation. In
Sec. 4.2 we discuss Squire’s theorem, which tells us that we only need to consider
2D (x, y) perturbations in order to determine the first occurrence of instability as
the Reynolds number is increased. In Sec. 4.3 we turn to inviscid fluids, and derive
Rayleigh’s inflexion point theorem for inviscid instability. Secs. 4.1 to 4.3 consider a
general base state uB(y). Finally in Sec. 4.4 we specialise uB(y) to the concrete case
of plane Poiseuille flow.

4.1 The Orr-Somerfeld equation

Here we derive the Orr-Somerfeld equation, which governs the linear stability of uni-
directional shear flows with respect to 3D perturbations, for viscous fluids.

4.1.1 Governing equations and boundary conditions

In non-dimensional form, the Navier-Stokes equations for the incompressible flow of a
viscous fluid are mass continuity

∇ · u = 0, (136)

and the momentum equations

∂tu + (u · ∇)u = −∇p +
1

Re
∇2u, (137)

in which Re is the Reynolds number. As usual we will represent u = (u, v,w)T in
Cartesian components (x, y, z)T . For boundary conditions, we assume no-slip and no-
permeation at each wall y = y1, y2. In the limit Re → ∞ of inviscid flow, the term in
∇2u drops out of (137). We discuss this case in Sec. 4.3 below.

4.1.2 Base state

All results in Secs. 4.1 to 4.3 will be derived for a general base state uB(y). In Sec. 4.4
we will consider the concrete example of planar Poiseuille flow uB(y) = 1 − y2, which
corresponds to flow between two infinite parallel planes at y1 = −1, y2 = +1, driven
by a pressure gradient ∂xpB = −2/Re.
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4.1.3 Small perturbation

As usual, we subject the base state to a small perturbation, as follows:

u = uB + δ







ũ(y)
ṽ(y)
w̃(y)






ei(αx+βz−ωt), (138)

p = pB + δp̃(y)ei(αx+βz−ωt), (139)

(real part understood). As usual δ is a small parameter, |δ| ≪ 1. The perturbation
has the form of a travelling wave with wavenumber components (α, β) in the (x, z)
plane; and frequency/growth rate ω. So note that here we have directly written the
perturbation in normal mode form, even before linearising the equations. In previous
sections, we instead linearised the equations for a general perturbation u = uB +
δu(x, y, z, t), turning to normal modes only later to solve these linearised equations.
The present approach is merely a shortcut through the same procedure.

In principle, two different kinds of instability can be discussed:

• Temporal instability – Here we assume that (α, β) are real and write ω = αc
where c = cr + ici is complex. This gives

e−iωt = e−iαct = e−iαcrte+αcit, (140)

with temporal instability if ci > 0 and temporal stability if ci < 0. (Note the
different convention from previous sections, which had exp(st) without an i in
the exponent, giving instability if sr > 0.)

• Spatial instability – Here we assume that (ω, β) are real, but allow the streamwise
wavenumber to be complex:

eiαx = eiαrxe−αix. (141)

This gives spatial instability if αi < 0 and spatial stability if αi > 0.

In what follows, we will consider only the temporal stability problem.

4.1.4 Linearise the equations

Considering temporal the stability problem with ω = αc and (α, β) real, we now
substitute the perturbed form (138, 139) into the governing equations (136, 137), and
expand in powers of δ. At O(δ) we then get the linearised equations

Continuity

i(αũ + βw̃) + ṽ′ = 0, (142)

Momentum balance

iα(uB − c)ũ + ṽu′

B(y) = −iαp̃ +
1

Re
(D2 − k2)ũ, (143)

iα(uB − c)ṽ = −p̃′(y) +
1

Re
(D2 − k2)ṽ, (144)

iα(uB − c)w̃ = −iβp̃ +
1

Re
(D2 − k2)w̃, (145)

where D ≡
d

dy
and k2 = α2 + β2. (146)
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To simplify the problem, our strategy will be first to eliminate ũ, w̃, p̃ to leave a single
equation in ṽ. This can be used finally to determine the linear stability (or instability)
of the base flow.

Taking iα(143) + iβ(145) we get

iα(uB − c)[iαũ + iβw̃] + iαṽu′

B = k2p̃ +
1

Re
(D2 − k2)[iαũ + iβw̃]. (147)

Using the continuity equation (142), we can replace [iαũ + iβw̃] with −Dṽ to get:

−iα(uB − c)Dṽ + iαṽu′

B = k2p̃ −
1

Re
(D2 − k2)Dṽ. (148)

Thus we have eliminated ũ, w̃ to leave (144, 148) in ṽ, p̃. Finally we eliminate ṽ as
follows. Operating across (148) with D we get

−iα(uB − c)D2ṽ + iαṽu′′

B = k2Dp̃ −
1

Re
(D2 − k2)D2ṽ. (149)

from which we have cancelled equal and opposite terms ±iαu′

BDṽ. (Do this as an
exercise.) From (144) we have

Dp̃ = −iα(uB − c)ṽ +
1

Re
(D2 − k2)ṽ (150)

which can be substituted into (149) to give

−iα(uB−c)D2ṽ+ iαṽu′′

B = −iαk2(uB−c)ṽ+
k2

Re
(D2−k2)ṽ−

1

Re
(D2−k2)D2ṽ. (151)

This tidies up to

1

Re
(D2 − k2)(D2 − k2)ṽ − iα

[

(uB − c)D2ṽ + k2(−1)(uB − c)ṽ − u′′

Bṽ
]

= 0, (152)

and finally

(D2 − k2)2ṽ − iαRe
[

(uB − c)(D2 − k2)ṽ − u′′

Bṽ
]

= 0. (153)

This is the Orr-Somerfeld equation, governing the linear stability/instability of
planar shear flow with respect to 3D perturbations, for viscous fluids.

4.1.5 Boundary conditions revisited

In Sec. 4.1.1 above we specified the boundary conditions at the walls y = y1, y2 to be
no permeation and no slip. We now translate these into conditions for the function ṽ
in the Orr-Somerfeld equation (153).

For the perturbation (ũ, ṽ, w̃) we have

ũ = w̃ = 0 on y = y1, y2 (no slip). (154)

Via the continuity equation (136), this is seen to be equivalent to

Dṽ = 0 on y = y1, y2 (no slip). (155)

We also have
ṽ = 0 on y = y1, y2 (no permeation). (156)

Together (155, 156) give the 4 boundary conditions on v̂ needed to fully specify the
solution to the 4th order Orr-Somerfeld equation (153).
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4.2 Squire’s theorem

As with all linear stability problems, the Orr-Somerfeld equation (OSE) with boundary
conditions (155, 156) has the form of an eigenvalue problem

c = c(α, k,Re;uB(y)). (157)

For any given α, k,Re this can be used to determine whether the base flow uB(y) is
linearly stable, ci < 0, or linearly unstable, ci > 0. (Recall that we are considering
modes such that the perturbation develops as exp(−iαct) = exp(αcit) exp(−iαcrt).)

Often, however, we are only interested in the instability that appears first as the
control parameter Re is increased. In this case, Squire’s theorem tells us that we need
only consider 2D disturbances:

Squire’s theorem — If a growing 3D disturbance can be found at a given Reynolds
number, then a growing 2D disturbance exists at a lower Reynolds number.

This can be seen as follows. Consider a base state uB(y). Imagine a growing 3D
disturbance to this base state at Reynolds number Re3D, with wavenumbers α3D, β3D,
and k2

3D = α2
3D + β2

3D. This corresponds to a solution c, ṽ with ci > 0 of the 3D OSE

1

iα3DRe3D
(D2 − k2

3D)2 ṽ =
[

(uB − c)(D2 − k2
3D) − D2uB

]

ṽ. (158)

Now consider a 2D disturbance at a Reynolds number Re2D. This has β = 0, k2D = α2D

and must satisfy the 2D OSE

1

iα2DRe2D
(D2 − α2

2D)2 ṽ =
[

(uB − c)(D2 − α2
2D) − D2uB

]

ṽ. (159)

For values α2D = k3D and Re2D = α3DRe3D/α2D = α3DRe3D/k3D, this 2D OSE has
the form

1

iα3DRe3D
(D2 − k2

3D)2 ṽ =
[

(uB − c)(D2 − k2
3D) − D2uB

]

ṽ, (160)

which is exactly the same as (158). It must therefore have the same growing solution
c, ṽ with ci > 0.

Therefore, corresponding to the growing 3D disturbance at Re3D with α3D, β3D, k2
3D =

α2
3D + β2

3D, there exists a growing 2D disturbance at Re2D with α2D = k3D.
It remains finally to show that Re2D ≤ Re3D. This is done as follows. Since

k2
3D = α2

3D +β2
3D, we have k3D ≥ α3D and so Re2D ≤ Re3D. Hence, the 2D disturbance

grows at the lower Reynolds number Re2D ≤ Re3D, as originally claimed.
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4.3 The inviscid theory

We now consider the limit of inviscid flows, Re → ∞. We start in Sec. 4.3.1 by intro-
ducing Rayleigh’s equation, which is the counterpart of the Orr-Somerfeld equation in
this limit. We then use Rayleigh’s equation to derive Rayleigh’s inflexion point theo-
rem, Sec. 4.3.2, which tells us that a necessary condition for (inviscid) instability is the
existence of an inflexion point D2uB(y) = 0 somewhere in the flow domain y1 < y < y2.

4.3.1 Rayleigh’s equation

Fixing y and α and letting Re → ∞, the Orr-Somerfeld equation (153) becomes

(uB(y) − c)(D2 − α2)ṽ − (D2uB)ṽ = 0. (161)

This is Rayleigh’s equation. In contrast to the original Orr-Somerfeld equation,
which contained derivatives D4ṽ of fourth order, Rayleigh’s equation contains only
derivatives D2ṽ that are at most of second order. It can therefore in general only be
solved subject to two boundary conditions:

ṽ = 0 on y = y1, y2 (no permeation at each wall). (162)

In this way, the condition of no slip is (apparently) discarded. Refer to any textbook
on boundary layers if you would like to know more about this. The limit Re → ∞ is
said to be singular, since 1/Re multiplies the highest order derivative in (153).

A property of Rayleigh’s equation

• If c is an eigenvalue of Rayleigh’s equation, then so is its complex conjugate c̄.

This can be seen as follows. Suppose that ṽ(y; c) is a non-trivial solution of Rayleigh’s
equation:

(uB − c)(D2 − α2)ṽ − (D2uB)ṽ = 0 with ṽ(y1; c) = ṽ(y2; c) = 0. (163)

Taking the complex conjugate of this, we get

(uB − c̄)(D2 − α2)v̄ − (D2uB)v̄ = 0 with v̄(y1; c̄) = v̄(y2; c̄) = 0, (164)

where v̄ is the complex conjugate of ṽ. Thus, if ṽ(y; c) is a solution of Rayleigh’s
equation, then so is v̄(y; c̄) as stated above.

This property is important because it tells us that if any complex eigenvalue can
be found then the base flow must be unstable, because one of c and c̄ will have an
imaginary part greater than zero, ci > 0. (Recall that we are considering modes such
that the perturbation develops as exp(−iαct) = exp(αcit) exp(−iαcrt).) We will now
make use of this in our derivation of Rayleigh’s inflexion point theorem.
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4.3.2 Rayleigh’s inflexion point theorem

Suppose that uB and DuB are continuous in y1 < y < y2. Rayleigh’s inflexion point
theorem then states that a necessary (though not sufficient) condition for inviscid
instability is that the base state possesses an inflexion point D2uB = 0 somewhere in
the domain y1 < y < y2. If a base state lacks an inflexion point, therefore, we can
conclude it to be stable, for inviscid fluids.

This can be seen as follows. Consider Rayleigh’s equation in the following form:

D2ṽ −

(

α2 +
D2uB

uB − c

)

ṽ = 0. (165)

As usual c = cr + ici. Our strategy will be initially to suppose that the flow is unstable,
ci > 0, and then to prove that an inflexion point D2uB = 0 must exist for this to be
so.

Pre-multiplying (165) across by v̄, the complex conjugate of ṽ, and integrating from
y1 to y2, we get

∫ y2

y1

v̄D2ṽdy −

∫ y2

y1

(

α2 +
D2uB

uB − c

)

|ṽ|2 dy = 0, (166)

with |ṽ|2 = ṽv̄. Integrating the first term by parts we get

[Dṽ.v̄]y2

y1
−

∫ y2

y1

Dṽ.Dv̄ dy −

∫ y2

y1

(

α2 +
D2uB

uB − c

)

|ṽ|2 dy = 0. (167)

Using the boundary condition v̄(y1) = v̄(y2) = 0, we see that the first term equals zero,
leaving

−

∫ y2

y1

|Dṽ|2dy −

∫ y2

y1

(

α2 +
D2uB

uB − c

)

|ṽ|2 dy = 0. (168)

Multiplying both the numerator and denominator of the second term in the brackets
by uB − c̄, we get

−

∫ y2

y1

|Dṽ|2dy −

∫ y2

y1

(

α2 +
D2uB.(uB − c̄)

|uB − c|2

)

|ṽ|2 dy = 0. (169)

The imaginary part of this equation is

−ci

∫ y2

y1

D2uB|ṽ|
2

|uB − c|2
dy = 0. (170)

Let us denote the integral in this expression by I. For (170) to be satisfied, we must
clearly have either ci = 0 or I = 0. We have already assumed that ci > 0, corresponding
to unstable flow. Therefore, we must have I = 0. Examining the various components
of I’s integrand, we see that |ṽ|2 > 0 and |uB − c|2 > 0. For I = 0, therefore, D2uB

must change sign somewhere in the domain (y1, y2).

Finally, then, we can conclude that

• a necessary condition for inviscid instability is the presence of an inflexion point;

• the absence of an inflexion point necessarily confers (inviscid) stability.
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4.3.3 Other stability results

Here we state without proof some other results for the stability of inviscid flows.

• Fjortoft’s theorem A necessary condition for instability is that

u′′

B(uB − uc) < 0 somewhere in the fluid, (171)

where uc is the flow speed at the inflexion point (i.e. uc = uB(yc) with u′′

B(yc) = 0).

• Tollmien’s result For a symmetrical profile in a channel, or for a boundary layer,
the existence of an inflexion point u′′

B(yc) = 0 is not only necessary but also a sufficient
condition for instability. The inviscid flow sketched as follows is thus linearly unstable.

Bu’’  = 0

• Howard’s semi-circle theorem All unstable waves have c = cr + ici satisfying

[

cr −
1

2
(umax − umin)

]2

+ c2
i ≤

1

2
(umax − umin)

2. (172)

where
umax = max uB(y) (173)

umin = min uB(y) (174)

Thus, all unstable modes lie in the shaded semi-circle sketched below, centred on
cr = 1

2(umax + umin), ci = 0 and of radius 1
4(umax − umin).

c i

c r
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4.4 Plane Poiseuille flow

In Secs. 4.1 to 4.3 above we considered a general base state uB(y). We now turn to the
concrete example of plane Poiseuille flow:

uB = (1 − y2) for − 1 ≤ y ≤ 1, (175)

which corresponds to flow between two infinite parallel planes at y1 = −1, y2 = +1,
driven by a pressure gradient ∂xpB = −2/Re. For this we have

D2uB = −2 (176)

everywhere in the flow domain, with no inflexion point. By Rayleigh’s inflexion point
theorem, therefore, we can conclude the flow to be linearly stable in the inviscid limit
Re → ∞.

For finite Re, the Orr-Somerfeld equation must be solved numerically. The results
are sketched in Fig. 4.4. Several features are to be noted, as follows. For any Re >
Rc ≈ 5772, no matter how large, we have linear instability for a band of wavenumbers
αL(Re) < α < αU(Re). However both αL and αU → 0 as Re → ∞, with αL ∼ Re−1/7

and αU ∼ Re−1/11. So for any fixed α∗ the flow is stable in the inviscid limit Re → ∞,
consistent with Rayleigh’s inflexion point theorem.

α

Re

unstable

stable

α

α (Re) ~ ReU

L

−1/11

α *

Re *Rc

−1/7(Re) ~ Re 
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