
8 The Stuart-Landau equation

8.1 Derivation

In Sec. 6 above, we studied the linear stability properties of the Eckhaus equation

1

R
[Φηη + Φξξ] − Φξξξξ − Φt = ΦηΦξξ. (69)

As usual, we expressed Φ as the sum of a base state ΦB = η plus a small deviation,

Φ = ΦB + ǫ cos(kξ) sin(nπη) exp(σt), (70)

and showed the growth rate σ to depend on the control parameter R, on the wavevector
k and on the wavenumber n as

σ = k2 − k4 − R−1
[

n2π2 + k2
]

. (71)

For the lowest mode n = 1, this gives the neutral stability curve (on which σ = 0)
sketched below. For any fixed value of k, the point at which σ = 0 marks a bifurcation
at which the base flow switches from being linearly stable (σ < 0) to linearly unstable
(σ > 0) with respect to perturbations of wavevector k.
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We now turn to the nonlinear dynamics of the Eckhaus equation. Our aim is to
derive a simple nonlinear dynamical equation governing the amplitude of perturbations
to the base state in the vicinity of bifurcation, where the nonlinearity remains weak.
For simplicity we consider the single, fixed value of the wavevector k = kcm marked in
the above sketch, for values of the control parameter R = Rcm + δR1. Here R1 = O(1)
and δ is a small parameter characterising the distance from the bifurcation, as marked
by the thick dashed line above. Using this nonlinear equation, we will show that the
model exhibits a pitchfork bifurcation as R is tracked through Rcm along this thick
dashed line at fixed k = kcm.

Along this line, the growth rate has the form sketched roughly as follows:
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In the vicinity R = Rcm + δR1 of Rcm, the behaviour of σ can be examined by setting
n = 1, k = kcm in Eqn. 71 and Taylor expanding the resulting expression about Rcm:

σ = σ(Rcm) + δR1
∂σ

∂R
(R = Rcm) + · · ·

= δR1
1

R2
cm

(π2 + k2
cm) + · · · , (72)

in which we have set σ(Rcm) = 0 by definition of the bifurcation point. For values of
R = Rcm + δR1 near the bifurcation point, therefore, the growth rate σ = O(δ), which
is small. This suggests that we define a slow timescale, suited to tracking the slow
evolution of the perturbations:

τ = δ t = O(1) giving
∂

∂t
→ δ

∂

∂τ
. (73)

Our aim now is to seek a solution to the Eckhaus equation (69), treating δ as a
small parameter. To do so, it helps first to collect together for convenient reference the
δ dependencies of the various quantities discussed above:

k = kcm, (74)

R = Rcm + δR1, (75)

σ = δR1
1

R2
cm

(π2 + k2
cm) + · · · (76)

τ = δ t = O(1) giving
∂

∂t
→ δ

∂

∂τ
. (77)

We also assume a solution of the form

Φ = η +
{

δ1/2φ1 + δφ2 + δ3/2φ3 + · · ·
}

, (78)

where η is the usual base state and {} is the perturbation. The boundary conditions
on the φm are as follows

φm = 0 at η = 0, 1 for m = 1, 2, 3 · · · (79)

Our basic tactic is to substitute (75), (77) and (78) into (69), and consider each suc-
cessive order δ1/2, δ and δ3/2 in turn. Because these expansions are quite cumbersome,
however, it helps to consider the various terms in (69) separately in turn.

On the LHS, we have

1

R
[Φηη + Φξξ] =

(

1

Rcm
−

δ R1

R2
cm

+ · · ·

)

×
[

δ1/2(φ1 ηη + φ1 ξξ) + δ(φ2 ηη + φ2 ξξ) + δ3/2(φ3 ηη + φ3 ξξ) + · · ·
]

= δ1/2 1

Rcm
(φ1 ηη + φ1 ξξ) + δ

1

Rcm
(φ2 ηη + φ2 ξξ)

+δ3/2
[

1

Rcm
(φ3 ηη + φ3 ξξ) −

R1

R2
cm

(φ1 ηη + φ1 ξξ)

]

+ · · · , (80)

together with the fourth derivative

−Φξξξξ = −δ1/2φ1 ξξξξ − δφ2 ξξξξ − δ3/2φ3 ξξξξ + · · · , (81)

and the time derivative
−Φt = −δ3/2φ1 τ + · · · (82)

Note that this comes in only at O(δ3/2), because of the prefactor δ in (77).
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On the RHS of (69) we have the nonlinear term

ΦηΦξξ = (1 + δ1/2φ1 η + δφ2 η + δ3/2φ3 η + · · ·) × (δ1/2φ1 ξξ + δφ2 ξξ + δ3/2φ3 ξξ + · · ·)

= δ1/2φ1 ξξ + δ(φ2 ξξ + φ1 ηφ1 ξξ) + δ3/2(φ3 ξξ + φ1 ηφ2 ξξ + φ2 ηφ1 ξξ) + · · · (83)

We can now write equation (69) at each successive order δ1/2, δ and δ3/2 simply by
collecting the relevant terms from (80) to (83).

• At O(δ1/2) we have

1

Rcm
(φ1 ηη + φ1 ξξ) − φ1 ξξξξ = φ1 ξξ. (84)

This has the solution

φ1 = A(τ) sin(πη) exp(ikcmξ) + c.c. (85)

(As usual, c.c. denotes complex conjugate.) At this order, the amplitude A(τ) is
undetermined.

• At O(δ) we have

1

Rcm
(φ2 ηη + φ2 ξξ) − φ2 ξξξξ = φ2 ξξ + φ1 ηφ1 ξξ. (86)

Assembling on the LHS all terms in φ2, and substituting φ1 from (85) on the
RHS, we get

1

Rcm
(φ2 ηη + φ2 ξξ) − φ2 ξξξξ − φ2 ξξ = [πA(τ) cos(πη) exp(ikcmξ) + c.c.]

×
[

−k2
cmA(τ) sin(πη) exp(ikcmξ) + c.c

]

= −
πk2

cm

2
sin(2πη) [A(τ) exp(ikcmξ) + c.c]2 .

From this we find

φ2 = λ1A
2 sin(2πη) exp(2ikcmξ) + c.c. + λ2AĀ sin(2πη), (87)

in which Ā(τ) denotes the complex conjugate of A(τ). λ1 and λ2 are constants,
which we do not specify here.

• At O(δ3/2) we have

1

Rcm
(φ3 ηη +φ3 ξξ)−

R1

R2
cm

(φ1 ηη +φ1 ξξ)−φ3 ξξξξ−φ1 τ = φ3 ξξ +φ1 ηφ2 ξξ +φ2 ηφ1 ξξ.

Assembling on the LHS all terms in φ3, and on the RHS all terms in φ1, φ2, we
get

1

Rcm
(φ3 ηη +φ3 ξξ)−φ3 ξξξξ −φ3 ξξ = φ1 τ +φ1 ηφ2 ξξ +φ2 ηφ1 ξξ +

R1

R2
cm

(φ1 ηη +φ1 ξξ).

(88)
The basic strategy now is to substitute (85) and (87) for φ1 and φ2 into the RHS
of this equation. The result is unpleasantly messy, containing very many terms.
For reasons discussed below, the important ones for our purposes are those in
sin(πη). Accordingly, we focus only on these.
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Examining each term on the RHS for dependence on sin(πη), we get:

– RHS, term 1
φ1 τ = Aτ sin(πη) exp(ikcmξ) + c.c. (89)

– RHS, term 2

φ1 ηφ2 ξξ = [πA cos(πη) exp(ikcmξ) + c.c.]

×
[

λ1A
2 sin(2πη).(2ikcm)2 exp(2ikcmξ) + c.c

]

= cĀA2 sin(πη) exp(ikcmξ) + other terms. (90)

Here c is a constant, which we do not specify.

– RHS, term 3. This gives the same structure as term 2:

φ1 ξξφ2 η = dĀA2 sin(πη) exp(ikcmξ) + other terms. (91)

Again, d is a constant, which we do not specify.

– RHS, term 4

R1

R2
cm

(φ1 ηη + φ1 ξξ) =
R1

R2
cm

A(−π2 − k2
cm) sin(πη) exp(ikcmξ) + c.c. (92)

The reason for having focused on the terms in sin(πη) is as follows. Recalling that
the solution of an equation of the form (88) comprises the sum of a homogeneous
solution and a particular integral, we note that the terms in sin(πη) on the RHS
of (88) “resonate” with terms in the homogeneous solution. (This concept should
be familiar from previous courses on differential equations. For the rest of this
section, we will use it without further discussion to avoid interrupting our main
thread. We will return to revise it in more detail in Sec. 8.2 below. ) They
therefore lead to a particular integral of the form

η cos(πη) (93)

in the full solution for φ3. This clearly cannot satisfy the boundary condition
(79), and must therefore vanish identically. Accordingly, the prefactors to the
sin(πη) terms in (89) to (92) must add to give zero. This “solvability condi-
tion” gives finally our main result – the Stuart-Landau equation, governing the
weakly nonlinear dynamics of the amplitude of perturbations in the vicinity of
bifurcation:

dA

dτ
= σcA − βA|A|2. (94)

An equation of this basic form crops up quite generically when examining weakly
nonlinear dynamics in the vicinity of bifurcation points. For the example of the Eckhaus
equation used here, the constant

σc =
R1

R2
cm

(π2 + k2
cm), (95)

which is real. The constant β is also real (for the Eckhaus equation), though we do not
specify it. Note that in the limit |A| → 0, Eqn. 94 reduces to Aτ = σcA, reproducing
the result of the linear analysis, as required.
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8.2 Aside: solvability conditions

In the derivation of the Stuart-Landau (SL) equation, we expanded the Eckhaus equa-
tion in successive orders δ1/2, δ and δ3/2. At O(δ3/2) we found

1

Rcm
(φ3 ηη + φ3 ξξ) − φ3 ξξξξ − φ3,ξξ = F̃ (A) sin(πη) exp(ikcmξ) + other terms, (96)

in which
F̃ (A) = Aτ − σcA + β|A|2A. (97)

In this section, we will discuss in more detail the solvability condition that led us to
set F̃ (A) = 0, giving the SL equation (94).

We start by setting φ3 = f(η) exp(ikcmξ) in (96). In conjunction with Rcm =
(π2 + k2

cm)/(k2
cm − k4

cm), obtained in the linear analysis of Sec. 6, this gives

f ′′ + π2f = F (A) sin(πη) (98)

in which
F (A) = RcmF̃ (A). (99)

Recalling (79), we see that f is subject to the boundary conditions

f(0) = 0 and f(1) = 0. (100)

Eqn. 98 has the form of a linear second order ordinary differential equation. Its
solution comprises a homogeneous solution fh plus a particular integral fp:

f = fh + fp. (101)

The homogeneous solution

fh = Â cos(πη) + B̂ sin(πη) (102)

is the standard solution of the homogeneous equation that is formed by setting the
RHS equal to zero in (98). The particular integral has the form

fp = Ĉη cos(πη), (103)

in which the constant

Ĉ = −
F (A)

2π
(104)

is found by substituting (103) into (98). The general solution of (98) is therefore

f = Â cos(πη) + B̂ sin(πη) −
F (A)

2π
η cos(πη). (105)

Applying the boundary condition f(0) = 0, we find Â = 0. Applying f(1) = 0, we find

F (A) = 0. (106)

This is the solvability condition. In conjunction with (97) and (99), it gives finally the
Stuart-Landau equation (94).
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Now let’s examine the solvability condition in the context of the more general
equation

f ′′ + π2f = R(η), (107)

subject to the usual boundary conditions

f(0) = 0 and f(1) = 0. (108)

Multiplying (107) across by some function g(η) and integrating over the domain, we
get

∫ 1

0
g[f ′′ + π2f ]dη =

∫ 1

0
g(η)R(η)dη. (109)

Integrating by parts twice on the LHS we get

[gf ′ − g′f ]10 +

∫ 1

0
f [g′′ + π2g]dη =

∫ 1

0
g(η)R(η)dη. (110)

We now choose g(η) so that
g′′ + π2g = 0, (111)

with boundary conditions
g(0) = 0 and g(1) = 0. (112)

(111) and (112) define the so-called “adjoint” problem for g. Together they ensure that
the LHS of (110) is zero, so that

0 =

∫ 1

0
g(η)R(η)dη. (113)

This is the solvability condition, for a general R(η). It requires the solution g(η) =
B̃ sin(πη) of the adjoint problem to be orthogonal to R(η) on the domain.

For the special case of R(η) = F (A) sin(πη) discussed above, (113) gives

0 = B̃F (A)

∫ 1

0
sin2(πη)dy, (114)

which requires F (A) = 0 as before. For the different special case of R(η) = F (A) cos(πη),
(113) gives instead

0 = B̃F (A)

∫ 1

0
sin(πη) cos(πη)dy. (115)

Here we find a problem, because

∫ 1

0
sin(πη) cos(πη)dy = 0, (116)

i.e. sin(πη) and cos(πη) are already orthogonal on the interval [0, 1], and (115) therefore
does not provide a condition for F (A).
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8.3 Predictions of the Stuart-Landau equation

In Sec. 8.1 above, we derived the Stuart-Landau (SL) equation

dA

dτ
= σcA − βA|A|2, (117)

which describes weakly nonlinear dynamics in the vicinity of a bifurcation point. Al-
though our derivation was performed in the context of the Eckhaus equation, the SL
equation actually emerges quite generically in systems that are close to bifurcation. In
many physical models, the constants σc and β turn out to be complex. For the simpler
case of the Eckhaus equation, recall that they were real.

In this section, we will consider the dynamical behaviour predicted by (117). In
order to do so, we will write A(τ) = ρ(τ)eiθ(τ), and derive corresponding equations of
motion for the amplitude ρ and phase θ. We will then analyse the predictions of these,
separately for the case of σc, β real and complex.

Substituting A(τ) = ρ(τ)eiθ(τ) into (117), then, we find

ρ̇eiθ(τ) + ρiθ̇eiθ(τ) = σcρeiθ(τ) − βρ3eiθ(τ). (118)

Cancelling across the factor eiθ(τ), and taking real and imaginary parts of the resulting
equation, we get

ρ̇ = σcrρ − βrρ
3, (119)

and
θ̇ = σci − βiρ

2, for ρ 6= 0, (120)

(We have used the usual notation β = βr + iβi, and likewise for σc.)

8.3.1 σc, β real

For σc and β real, (119) gives

ρ̇ = σcrρ − βrρ
3 and θ̇ = 0. (121)

So the dynamics of the phase θ̇ = 0 is trivial. The equation of motion for the amplitude
ρ̇ = · · · is of the form of (30), which is the normal form for a pitchfork bifurcation.
Thus we have a supercritical pitchfork bifurcation if βr > 0 (sketched below) and a
subcritical pitchfork bifurcation if βr < 0 (recall the lower sketch of page 12) .

s

s

u

s

s − stable
u − unstable

ρ

σc

1/2
+

rβ > 0   supercritical pitchfork bifurcation

cr(σ  /β )r

cr(σ  /β )1/2
− r
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8.3.2 Complex: σci 6= 0

The equation of motion for the amplitude is as before

ρ̇ = σcrρ − βrρ
3, (122)

but now the phase also evolves in time according to

θ̇ = σci + · · · (123)

in which · · · represents the additional term −βiρ
2 that is present if βi 6= 0. Recalling

Q1 of problem sheet 4, therefore, we anticipate Hopf bifurcations in this case.
In the Argand plane, ρ gives the distance from the origin, and θ the phase angle.

We can thus distinguish the following four scenarios, according to the signs of σcr and
βr. For βr > 0, we indeed have a supercritical Hopf bifurcation as σcr changes sign
(recall the sketches on page 14). For βr < 0, we have a subcritical Hopf bifurcation.

A

A i

r

crσ  < 0,  β > 0r

A
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r

crσ  > 0,  β < 0r

A
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r

unstable focus

critical
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A

A i

r

crσ  > 0,  β > 0r

crσ  < 0,  β < 0r

stable focus

Hopf

super−
critical

unstable focus; stable limit cycle

stable focus; unstable limit cycle

The sense of rotation (clockwise/anti-clockwise) depends on the sign of σci, which
has been assumed positive in the above sketches. Switching the sign of σci in any of
these would not change whether the system spirals into or out of the origin (which
is determined by σcr). It would change the sense of the spiral from anti-clockwise to
clockwise.
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8.4 Physical examples

8.4.1 Taylor-Couette instability

T
s u

s

s

A

perturbation: A f(r) cos(  z) exp(  t) + ...λ σ

at fixed λ = π
linear stability supercritical pitchfork

T

λ

π σ > 0

σ = 0

z

r

σ < 0

control parameter: Taylor number T

8.4.2 Shear flow instability (planar Poiseuille)

1
α = α

2
α = α

σ = 0i

1
α = α 2
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control parameter: Reynolds number Re
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