
9 The Ginzburg-Landau equation

In Sec. 8, we derived the Stuart-Landau equation (94) for the weakly nonlinear dynam-
ics of the amplitude A(τ) in the vicinity of bifurcation. In the context of the Eckhaus
equation, we expanded R = Rcm +δR1 about the minimum critical value of the control
parameter R for small values of δ. For simplicity we considered only the single fixed
wavevector k = kcm, which is the first to go unstable as R is tracked through Rcm.
Thus we considered perturbations of the form

φ̃ = δ1/2φ1 + δφ2 + δ3/2φ3 · · · , (124)

in which
φ1 = A(τ) sin(πη) exp(ikcmξ) + c.c. (125)

As seen from the below sketch, however, for any R = Rcm + δR1 in the unstable
regime there is actually a band of width O(δ1/2) of unstable wavevectors. In this section,
therefore, we relax the assumption of fixed k = kcm and consider the weakly nonlinear
dynamics of this entire band. Doing so will lead to the Ginzburg-Landau equation
(131). This has a very similar structure to the Stuart-Landau equation, containing
only the single additional term µAXX to allow for slow spatial variation of A = A(X, τ)
that arises on the long length scale X = δ1/2ξ once the band of wavevectors is included.
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With the above discussion in mind, we consider a spatial dependence of the form

φ1 ∼ eikξ = ei(kcm+δ1/2k̃)ξ = B(X)eikcmξ (126)

in which k̃ = O(1) and
X = δ1/2ξ. (127)

So as well considering evolution on the slow timescale τ , we now also allow variations
on the slow spatial scale X, considering a perturbation of the form

φ1 = A(X, τ) sin(πη)eikcmξ + c.c. (128)
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To derive the Ginzburg-Landau equation, we perform an expansion that is closely
analogous to the one in our derivation of the Stuart-Landau equation in Sec. 8.1, but
now with

∂

∂ξ
→

∂

∂ξ
+ δ1/2 ∂

∂X
. (129)

Accordingly, at O(δ3/2) we obtain additional terms of the form

∂2φ1

∂X2
(130)

on the RHS of the Eckhaus equation. Accounting for these, the amplitude equation
becomes

Aτ = σcA − βA|A|2 + µAXX . (131)

This is the Ginzburg-Landau (GL) equation. As noted above, it has a very similar
structure to the Stuart-Landau equation (94), with the additional term µAXX now
allowing for the new dependence of A = A(X, τ) on the slow spatial scale X.

When derived in the context of the Eckhaus equation, the constants σc, β, µ in
the GL equation are real. GL equations have also been derived for weakly nonlinear
dynamics in the vicinity of bifurcation for Bénard convection, Taylor vortices and
Poiseuille flow. In general, the constants σc, β, µ can be complex.

9.1 Solution of the Ginzburg-Landau equation

We now consider solutions of the Ginzburg-Landau equation

Aτ = σcA − βA|A|2 + µAXX (132)

for the case of real σc, β, µ. Our aim will be first to seek a stationary solution in the
form Ae exp(ik̃X), and then to study the linear stability of this solution.

9.1.1 Stationary solution

Consider a stationary solution in the form

A = Aee
ik̃X , (133)

in which we set Ae real WLOG. Substituting this into (132), we get

0 = σcAee
ik̃X − βA3

ee
ik̃X − µk̃2Aee

ik̃X , (134)

and so
βA2

e = σc − µk̃2. (135)

This is essentially the same solution found at the bottom of page 26, but with the
additional term µk̃2 arising from the new spatial dependence.
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9.1.2 Linear stability

We now consider the linear stability of this stationary state. As usual, we write

A = Aee
ik̃X + B(X, τ) (136)

for |B| ≪ 1, and linearise the dynamical equation of motion (132). Doing so gives

Bτ (X, τ) = σcB − β
(

2A2
eB + A2

eB̄e2ik̃X
)

+ µBXX . (137)

As usual, B̄ denotes the complex conjugate of B. In obtaining (137), we expanded the
nonlinear term

A|A|2 = (Aee
ik̃X + B)(Aee

ik̃X + B)(Aee
−ik̃X + B̄), (138)

and extracted from this the terms O(|B|) as follows:

Aee
ik̃X(BAee

−ik̃X + B̄Aee
ik̃X) + BA2

e. (139)

These reorganise to give the term in brackets in (137).
We now seek a solution to (137) in the form

B(X, τ) = a(τ)eik̃1X + b(τ)eik̃2X , with 2k̃ = k̃1 + k̃2. (140)

Substituting this into (137) and collecting together terms in exp(ik̃1X) and in exp(ik̃2X)
gives respectively

aτ = σca − 2βA2
ea − βA2

e b̄ − µk̃2
1a, (141)

and
bτ = σcb − 2βA2

eb − βA2
e ā − µk̃2

2b. (142)

Substituting βA2
e from (135) into (141) gives

aτ = σca − 2[σc − µk̃2]a − [σc − µk̃2]b̄ − µk̃2
1a, (143)

which can be written in a more compact form

aτ = σ1a − 2σ0a − σ0b̄, (144)

with σ0, σ1 defined in (147) below. Substituting βA2
e from (135) into (142) gives

bτ = σcb − 2[σc − µk̃2]b − [σc − µk̃2]ā − µk̃2
2b. (145)

Taking the complex conjugate of this, and writing in a more compact form, we get

b̄τ = σ2b̄ − 2σ0b̄ − σ0a. (146)

In the compact forms (144) and (146), we have set

σ0 = σc − µk̃2, σ1 = σc − µk̃2
1, and σ2 = σc − µk̃2

2. (147)

We now seek a solution to (144) and (146) in the form a(τ) = α1 exp(sτ) and b̄(τ) =
ᾱ2 exp(sτ). Substituting this into (144) and (146) gives

sα1 = σ1α1 − 2σ0α1 − σ0ᾱ2,

sᾱ2 = σ2ᾱ2 − 2σ0ᾱ2 − σ0α1. (148)
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This has a nontrivial solution if

s − σ1 + 2σ0 σ0

σ0 s − σ2 + 2σ0
= 0. (149)

Expanding this determinant gives a quadratic equation in s. In this, it can be shown
that ℜs > 0 if

k̃2 > γ > 0 (150)

for some real constant γ, signifying linear instability of our original stationary solution

Aee
ik̃δ1/2ξ sin(πη)eikcmξ + c.c. (151)

So this solution is unstable if its wavevector k = kcm +δ1/2k̃ deviates from kcm by more
than the critical amount γδ1/2, as indicated by the shaded area in the below sketch.
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